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How do I start with CFEngine?

You “bootstrap”...



  

cf-agent --bootstrap 1.2.3.4

● Removes all inputs/
● Generates inputs/failsafe.cf
● Checks if address provided is local; if so:

● Sets am_policy_hub
● Touches state/am_policy_hub
● Checks existence of masterfiles/promises.cf

● Writes policy_server.dat
● Evaluates failsafe.cf



  

failsafe.cf

● Runs cf-key, i.e. generates 
ppkeys/localhost.{priv,pub}

● inputs => copy_from 
hub:/var/cfengine/masterfiles

● cf-execd

● cf-agent -f update.cf



  

In broad terms, bootstrapping ensures that:

● Policy is copied over from the Hub

● Executor is started

● Agent trusts the Hub
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Peer's identity: MD5-0123456789abcdef.pub

# cf-key  -p /var/cfengine/ppkeys/localhost.pub
MD5=839bfd0b494358fe67aaf9a607246c41

➢ A peer trusts all identities that are in ppkeys/

➢ A peer does not trust anybody else.

● SSH-like: No certificates, no CAs, no CRLs

● SSH-unlike: Two-way trust



  

Trust Establishment

body copy_from:
➔trustkey => “true”;     #failsafe.cf

body server control:
➔trustkeysfrom => {“0.0.0.0/0”};

All connecting peers are always accepted and key 
is stored as trusted.



  

Trust Established

body copy_from:
➔trustkey => “false”;      #default

body server control:
➔trustkeysfrom => {};

Any connecting peer with an unknown key is 
immediately rejected.



  

Trust revocation

● Keep your trustkeysfrom list empty and your 

ACLs closed down

● Delete respective key file



  

Standard bootstrapping (easiest)

(1) Ensure protected internal network

(2) Automatically bootstrap each client (tip: 

visually verify MD5 IDs)

(3) Empty trustkeysfrom and close-down the rest 

of the ACLs (allowconnects mostly)

Note: Client can then be deployed anywhere and even 
change address, keys are not attached to IPs.



  

Standard bootstrapping (easiest)

(1) Ensure protected internal network

(2) Automatically bootstrap each client (tip: 

visually verify MD5 IDs)

(3) Empty trustkeysfrom and close-down the rest 

of the ACLs (allowconnects mostly)

Note: Client can then be deployed anywhere and even 
change address, keys are not attached to IPs.

–- Not recommended in the Open Internet ---



  

Alternative ways to bootstrap

Run from the hub:
cf-runagent -i -H $CLIENTIP

Manually exchange keys:
DEMO



  

DEMO

● Hub up and running, properly secured 
(failsafe.cf, update.cf, promises.cf, cf_serverd.cf)

➢ failsafe.cf changed and served in masterfiles
● Client: cf-key          # generate key pair
● Client: echo $HUB_IP > policy_server.dat
● Copy failsafe.cf to client's inputs
● Client: running failsafe.cf fails, must copy keys

● cf-key -p  gives the MD5 ID of the key
● scp localhost.pub $CLIENT_IP:root-MD5=aaaa.pub
● scp $CLIENT_IP:localhost.pub root-MD5=bbbb.pub

● Client: cf-agent -f failsafe.cf  # Success!
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Why prefer TLS?

● Fully encrypted and integrity checked channel
● Frequently attacked 
● Frequently updated
● Industry standard
● Slightly faster (more optimised code), higher 

grade ciphers
● User experience remains the same – same old 

trust model, no certificates, no CAs, no CRLs



  

How to enforce TLS in CFEngine

body common control in promises.cf, 
update.cf, failsafe.cf:

➔protocol_version => “latest”
➔trustkey => ”false”

body server control:

➔allowlegacyconnects => {}



  

Plan is to extend TLS support

● Support new versions of the TLS spec

● More configurability (ciphers, versions etc)

● Change to TLS as default
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Generic Guideline

● Do not distribute secrets in the policy 

➢ Can't avoid secrets' distribution? Encrypt using 
client's public key, decrypt using clients's 
private key

cf-keycrypt (community effort)
https://github.com/cfengineers-net/cf-keycrypt

https://github.com/cfengineers-net/cf-keycrypt


  

There are cases that even not-so-sensitive data 
needs to be protected, e.g. password hashes

● bundle server access_rules:
➔admit_keys
➔shortcut



  

DEMO

● bundle server access_rules:
"/var/cfengine/priv/$(connection.key)/shadow"
      shortcut   => "myshadow",
      admit_keys => { "$(connection.key)" };

● Agent policy:
“/etc/shadow” => remote_cp(
  “myshadow”, 
  “$(sys.policy_hub)”
);

● Equivalent to
“/etc/shadow” => remote_cp(
  “/var/cfengine/priv/MD5=.../shadow”, 
  “$(sys.policy_hub)”
);
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Diagnosing Problems

TODO: Launch verbose server listening on 
different port, connect from problematic server 

to that port! … ;-)



  

Questions?

Ideas?

Flames?
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