

How to Deploy CFEngine in the Open Internet

Dimitrios Apostolou
jimis@cfengine.com

CFEngine AS

mailto:jimis@cfengine.com

Bootstrapping

Trust

TLS Protocol

Selective Asset Distribution

Diagnosing problems

Bootstrapping

Trust

TLS Protocol

Selective Asset Distribution

Diagnosing problems

How do I start with CFEngine?

You “bootstrap”...

cf-agent --bootstrap 1.2.3.4

● Removes all inputs/
● Generates inputs/failsafe.cf
● Checks if address provided is local; if so:

● Sets am_policy_hub
● Touches state/am_policy_hub
● Checks existence of masterfiles/promises.cf

● Writes policy_server.dat
● Evaluates failsafe.cf

failsafe.cf

● Runs cf-key, i.e. generates
ppkeys/localhost.{priv,pub}

● inputs => copy_from
hub:/var/cfengine/masterfiles

● cf-execd

● cf-agent -f update.cf

In broad terms, bootstrapping ensures that:

● Policy is copied over from the Hub

● Executor is started

● Agent trusts the Hub

Bootstrapping

Trust

TLS Protocol

Selective Asset Distribution

Diagnosing problems

Peer's identity: MD5-0123456789abcdef.pub

cf-key -p /var/cfengine/ppkeys/localhost.pub
MD5=839bfd0b494358fe67aaf9a607246c41

➢ A peer trusts all identities that are in ppkeys/

➢ A peer does not trust anybody else.

● SSH-like: No certificates, no CAs, no CRLs

● SSH-unlike: Two-way trust

Trust Establishment

body copy_from:
➔trustkey => “true”; #failsafe.cf

body server control:
➔trustkeysfrom => {“0.0.0.0/0”};

All connecting peers are always accepted and key
is stored as trusted.

Trust Established

body copy_from:
➔trustkey => “false”; #default

body server control:
➔trustkeysfrom => {};

Any connecting peer with an unknown key is
immediately rejected.

Trust revocation

● Keep your trustkeysfrom list empty and your

ACLs closed down

● Delete respective key file

Standard bootstrapping (easiest)

(1) Ensure protected internal network

(2) Automatically bootstrap each client (tip:

visually verify MD5 IDs)

(3) Empty trustkeysfrom and close-down the rest

of the ACLs (allowconnects mostly)

Note: Client can then be deployed anywhere and even
change address, keys are not attached to IPs.

Standard bootstrapping (easiest)

(1) Ensure protected internal network

(2) Automatically bootstrap each client (tip:

visually verify MD5 IDs)

(3) Empty trustkeysfrom and close-down the rest

of the ACLs (allowconnects mostly)

Note: Client can then be deployed anywhere and even
change address, keys are not attached to IPs.

–- Not recommended in the Open Internet ---

Alternative ways to bootstrap

Run from the hub:
cf-runagent -i -H $CLIENTIP

Manually exchange keys:
DEMO

DEMO

● Hub up and running, properly secured
(failsafe.cf, update.cf, promises.cf, cf_serverd.cf)

➢ failsafe.cf changed and served in masterfiles
● Client: cf-key # generate key pair
● Client: echo $HUB_IP > policy_server.dat
● Copy failsafe.cf to client's inputs
● Client: running failsafe.cf fails, must copy keys

● cf-key -p gives the MD5 ID of the key
● scp localhost.pub $CLIENT_IP:root-MD5=aaaa.pub
● scp $CLIENT_IP:localhost.pub root-MD5=bbbb.pub

● Client: cf-agent -f failsafe.cf # Success!

Bootstrapping

Trust

TLS Protocol

Selective Asset Distribution

Diagnosing problems

Why prefer TLS?

● Fully encrypted and integrity checked channel
● Frequently attacked
● Frequently updated
● Industry standard
● Slightly faster (more optimised code), higher

grade ciphers
● User experience remains the same – same old

trust model, no certificates, no CAs, no CRLs

How to enforce TLS in CFEngine

body common control in promises.cf,
update.cf, failsafe.cf:

➔protocol_version => “latest”
➔trustkey => ”false”

body server control:

➔allowlegacyconnects => {}

Plan is to extend TLS support

● Support new versions of the TLS spec

● More configurability (ciphers, versions etc)

● Change to TLS as default

Bootstrapping

Trust

TLS Protocol

Selective Asset Distribution

Diagnosing problems

Generic Guideline

● Do not distribute secrets in the policy

➢ Can't avoid secrets' distribution? Encrypt using
client's public key, decrypt using clients's
private key

cf-keycrypt (community effort)
https://github.com/cfengineers-net/cf-keycrypt

https://github.com/cfengineers-net/cf-keycrypt

There are cases that even not-so-sensitive data
needs to be protected, e.g. password hashes

● bundle server access_rules:
➔admit_keys
➔shortcut

DEMO

● bundle server access_rules:
"/var/cfengine/priv/$(connection.key)/shadow"
 shortcut => "myshadow",
 admit_keys => { "$(connection.key)" };

● Agent policy:
“/etc/shadow” => remote_cp(
 “myshadow”,
 “$(sys.policy_hub)”
);

● Equivalent to
“/etc/shadow” => remote_cp(
 “/var/cfengine/priv/MD5=.../shadow”,
 “$(sys.policy_hub)”
);

Bootstrapping

Trust

TLS Protocol

Selective Asset Distribution

Diagnosing problems

Diagnosing Problems

TODO: Launch verbose server listening on
different port, connect from problematic server

to that port! … ;-)

Questions?

Ideas?

Flames?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

