
Introduction to CFEngine Build
Lars Erik Wik, Ole Herman Schumacher Elgesem



CFEngine.com

● Background
● How it works
● Website: build.cfengine.com
● Command line interface: cfbs
● Module examples
● Demos
● Writing modules
● Contributing

Agenda



Background



CFEngine.com

CFEngine Build attempts to improve all these 3 needs from our 
users:
● An easier getting started experience, with more value “out of the 

box” (without learning and writing a lot of code)
● An easier way to upgrade (currently it is quite common to 

maintain your own policy set fork / patches)
● A place (website) with more examples, snippets, ready to use 

policy / modules

3 needs



CFEngine.com

10 years ago - Right idea, limited implementation.
No website.
CFEngine had limited JSON support, git integration, no CMDB.
Less “things” to put in modules (now we have custom promise 
types, compliance reports, …).

Design center



How it works



CFEngine.com

Workflow



CFEngine.com

We create a cfbs.json file in the current folder and run git init (by 
default).
We call this repo/folder a CFEngine Build project.
A project consists of multiple modules and some metadata.
When you build a project (cfbs build) you turn it into a policy set.
The policy set is what you deploy on your hub(s), in 
/var/cfengine/masterfiles.
This policy set is backwards compatible, to your hub and hosts it 
looks the same as before when you were not using CFEngine Build. 

Projects



CFEngine.com

Concept

Module 1
masterfiles

Module 2
…

Module 3
…

Policy set (masterfiles.tgz)

/var/cfengine/masterfiles
(backwards-compatible)

Project

Build

Deploy



CFEngine.com

Via git

Module 1
masterfiles

Module 2
…

Module 3
… Policy set 

(masterfiles.tgz)/var/cfengine/masterfiles
(backwards-compatible)

Project

git push

git pull



CFEngine.com



CFEngine.com

cfbs (and cf-remote) are written in Python
build.cfengine.com is built on Hugo (HTML templates, CSS, JS)
GitHub Actions for CI on PRs and uploading when merged

Choice of technology



CFEngine.com

JSON with modules (index) and versions is in GitHub
zip folders of all versions of modules are stored in AWS s3
● Snapshotted when authorʼs PR to build-index is merged
● Module will still be available, even if author removes repo

Architecture



CFEngine.com

It should not matter when or where you build a project.
For the same project the resulting build should be the same.
You build it locally today, your colleague builds it on their machine 
tomorrow, and on monday your CFEngine Hub builds it and deploys 
it.

Reproducibility



CFEngine.com

When you run cfbs, the command line tool, it looks in the current 
working directory for a cfbs.json file with:
● Metadata (name, description)
● Configuration for cfbs (git, …)
● Modules (what to build)

cfbs.json



CFEngine.com

cfbs.json



CFEngine.com

cfbs.json



Website



CFEngine.com

Home page



CFEngine.com

Featured modules



CFEngine.com

Search and tags



CFEngine.com

Module page



CFEngine.com

Module description (README)



Command Line Interface: cfbs



CFEngine.com

Allows you to create, edit, build, and install CFEngine Build projects.
Running cfbs build in a project gives you a policy set
The policy set is what you want to deploy;
● Locally with cfbs install
● Remotely with cf-remote deploy
● Or set up your policy server to pull with git

Command line tool - cfbs



CFEngine.com

cfbs init - Create new project
cfbs add - Add module to project
cfbs build - Build project into policy set
cfbs install - Install policy set (locally)

Important commands



CFEngine.com

Once you have a project, there are multiple options for deploying to 
your hub(s):
● cfbs build && cfbs install
● cfbs build && cf-remote deploy
● git push (set up hub to pull)
● Use GUI / Deploy button in CFEngine Enterprise Mission Portal

Deploying



Module examples



CFEngine.com

masterfiles
surf-cfengine-library
library-sshd-config

Base policy set / libraries



CFEngine.com

uninstall-telnet-server
ssh-protocol-2
delete-files
file-permissions
uninstall-packages

Enforce security requirements



CFEngine.com

cve-2021-3156-sudo
cve-2021-44228-log4j

CVEs (Fix / mitigate / investigate)



CFEngine.com

every-minute
client-initiated-reporting

Change settings



CFEngine.com

promise-type-http
promise-type-git
promise-type-systemd

Promise types



CFEngine.com

compliance-report-lynis
compliance-report-os-is-vendor-supported

Import reports



CFEngine.com

inventory-openssl-versions
inventory-sudoers
inventory-unshadowed-users
inventory-lastlog
inventory-etc-hosts

Add reporting data (inventory)



Demos



CFEngine.com

cfbs init
cfbs add uninstall-telnet-server
cfbs build
cf-remote deploy

Creating a project and adding a module



CFEngine.com

Create project



CFEngine.com

Add module



CFEngine.com

Build project



CFEngine.com

Deploy project



CFEngine.com

cfbs add delete-files
cfbs input delete-files
cfbs build && cf-remote deploy

Giving input to delete-files module



CFEngine.com



CFEngine.com

cfbs add ./my_policy.cf
cfbs build && cf-remote deploy

Policy writing



CFEngine.com

Add local policy file



CFEngine.com

git log

git commits



Writing modules



CFEngine.com

Make something which works for you (write code)
Put in GitHub repo, add a README
Create a PR to add your module to the build index JSON;

Writing / contributing modules

https://github.com/cfengine/build-index/blob/master/cfbs.json


CFEngine.com

See the next talk from Nick Anderson(!)

Writing a module

Have you heard 
about org mode?



Contributing



CFEngine.com

● Core (C programming)
● Masterfiles (CFEngine policy language)
● Documentation (Markdown / CFEngine policy language)
● 🆕 build.cfengine.com website (markdown / html / css / hugo)
● 🆕 cfbs CLI (python)
● 🆕 Modules:

○ Promise types (Python or bash or another language)
○ Inventory / reporting data (CFEngine policy language)
○ Security hardening / automate tasks (CFEngine policy language)
○ Flexible input-based modules (CFEngine policy language)
○ Compliance reports (JSON / CFEngine MP GUI)

More possibilities for contribution / sharing


