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CFEngine Build attempts to improve all these 3 needs from our 
users:
● An easier getting started experience, with more value “out of the 

box” (without learning and writing a lot of code)
● An easier way to upgrade (currently it is quite common to 

maintain your own policy set fork / patches)
● A place (website) with more examples, snippets, ready to use 

policy / modules

3 needs
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10 years ago - Right idea, limited implementation.
No website.
CFEngine had limited JSON support, git integration, no CMDB.
Less “things” to put in modules (now we have custom promise 
types, compliance reports, …).

Design center



How it works
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Workflow
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We create a cfbs.json file in the current folder and run git init (by 
default).
We call this repo/folder a CFEngine Build project.
A project consists of multiple modules and some metadata.
When you build a project (cfbs build) you turn it into a policy set.
The policy set is what you deploy on your hub(s), in 
/var/cfengine/masterfiles.
This policy set is backwards compatible, to your hub and hosts it 
looks the same as before when you were not using CFEngine Build. 

Projects
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Concept

Module 1
masterfiles

Module 2
…

Module 3
…

Policy set (masterfiles.tgz)

/var/cfengine/masterfiles
(backwards-compatible)

Project

Build

Deploy
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Via git

Module 1
masterfiles

Module 2
…

Module 3
… Policy set 

(masterfiles.tgz)/var/cfengine/masterfiles
(backwards-compatible)

Project

git push

git pull
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cfbs (and cf-remote) are written in Python
build.cfengine.com is built on Hugo (HTML templates, CSS, JS)
GitHub Actions for CI on PRs and uploading when merged

Choice of technology
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JSON with modules (index) and versions is in GitHub
zip folders of all versions of modules are stored in AWS s3
● Snapshotted when authorʼs PR to build-index is merged
● Module will still be available, even if author removes repo

Architecture
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It should not matter when or where you build a project.
For the same project the resulting build should be the same.
You build it locally today, your colleague builds it on their machine 
tomorrow, and on monday your CFEngine Hub builds it and deploys 
it.

Reproducibility
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When you run cfbs, the command line tool, it looks in the current 
working directory for a cfbs.json file with:
● Metadata (name, description)
● Configuration for cfbs (git, …)
● Modules (what to build)

cfbs.json
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cfbs.json
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cfbs.json



Website
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Home page
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Featured modules
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Search and tags
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Module page
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Module description (README)



Command Line Interface: cfbs
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Allows you to create, edit, build, and install CFEngine Build projects.
Running cfbs build in a project gives you a policy set
The policy set is what you want to deploy;
● Locally with cfbs install
● Remotely with cf-remote deploy
● Or set up your policy server to pull with git

Command line tool - cfbs
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cfbs init - Create new project
cfbs add - Add module to project
cfbs build - Build project into policy set
cfbs install - Install policy set (locally)

Important commands
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Once you have a project, there are multiple options for deploying to 
your hub(s):
● cfbs build && cfbs install
● cfbs build && cf-remote deploy
● git push (set up hub to pull)
● Use GUI / Deploy button in CFEngine Enterprise Mission Portal

Deploying



Module examples
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masterfiles
surf-cfengine-library
library-sshd-config

Base policy set / libraries
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uninstall-telnet-server
ssh-protocol-2
delete-files
file-permissions
uninstall-packages

Enforce security requirements
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cve-2021-3156-sudo
cve-2021-44228-log4j

CVEs (Fix / mitigate / investigate)
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every-minute
client-initiated-reporting

Change settings
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promise-type-http
promise-type-git
promise-type-systemd

Promise types
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compliance-report-lynis
compliance-report-os-is-vendor-supported

Import reports
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inventory-openssl-versions
inventory-sudoers
inventory-unshadowed-users
inventory-lastlog
inventory-etc-hosts

Add reporting data (inventory)



Demos
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cfbs init
cfbs add uninstall-telnet-server
cfbs build
cf-remote deploy

Creating a project and adding a module
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Create project



CFEngine.com

Add module
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Build project
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Deploy project
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cfbs add delete-files
cfbs input delete-files
cfbs build && cf-remote deploy

Giving input to delete-files module
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cfbs add ./my_policy.cf
cfbs build && cf-remote deploy

Policy writing
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Add local policy file
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git log

git commits



Writing modules
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Make something which works for you (write code)
Put in GitHub repo, add a README
Create a PR to add your module to the build index JSON;

Writing / contributing modules

https://github.com/cfengine/build-index/blob/master/cfbs.json
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See the next talk from Nick Anderson(!)

Writing a module

Have you heard 
about org mode?



Contributing
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● Core (C programming)
● Masterfiles (CFEngine policy language)
● Documentation (Markdown / CFEngine policy language)
● 🆕 build.cfengine.com website (markdown / html / css / hugo)
● 🆕 cfbs CLI (python)
● 🆕 Modules:

○ Promise types (Python or bash or another language)
○ Inventory / reporting data (CFEngine policy language)
○ Security hardening / automate tasks (CFEngine policy language)
○ Flexible input-based modules (CFEngine policy language)
○ Compliance reports (JSON / CFEngine MP GUI)

More possibilities for contribution / sharing


