
1

Ansible and CFEngine scalability
Vratislav Podzimek @ Northern.tech

I. MOTIVATION

Scalability is an important feature of any infrastructure management solution. Either the to-be-managed
infrastructure is big already or it is expected to grow as the business grows. Over time more and more
resources are needed for CI/CD pipelines and more customers use the product(s). Generally, growing a
business means more traffic and requests need to be handled by the infrastructure. Hence, scalability is
an important metric for comparing infrastructure management tools when deciding which one to use. Or
which ones.

In our previous white paper1, we presented Ansible and CFEngine as two very different, but com-
plementary approaches that together provide a great solution for infrastructure management thanks to
the combination amplifying their strengths and eliminating their weaknesses. One of those weaknesses
we mentioned was the limited scalability of Ansible. Some would call this a known fact, while others,
including us, would call it an assumption. We are software engineers and so we didn’t want to make claims
based on assumptions. And even though there are some posts with measurements of Ansible performance
across various numbers of managed hosts2, we wanted to have some hard data based on a reproducible
model.

II. MODEL

A. Scenario
In order to compare two infrastructure management tools, we needed a simple, small, yet still real-life

example of what to configure on the given hosts. We decided to test deployment of a very basic setup
which, however, represents a variety of real-life use cases – a high-availability proxy (aka load-balancer)
with any number of backend web servers, all being separate virtual machines. Of course, a modern
approach would involve pods, containers, and many other things instead of hundreds or thousands of
separate virtual machines each running one service. But deploying services over a set of machines is the
primary goal of infrastructure management. After all, every single machine should serve some purpose.
As far as the tooling is concerned, it shouldn’t matter if some hosts run a database, some others run a web
server and some others run a caching layer. On all those machines the setup boils down to "prepare the
environment for the service to run properly and securely, start the service and make sure everything keeps
running and remains secure". Doing slightly different things on different hosts means the configuration
description (Ansible playbook, CFEngine policy,. . . ) needs to be more complex, but we wanted to keep
things simple to reduce the effect of hidden variables and external dependencies in the model.

The desired configuration is described in the following specification:
• There is one machine serving as an HA proxy:

– running CentOS 7,
– with the haproxy software installed and the haproxy service running, serving content from all the

backend web servers (described below) at port 80 using the round-robin strategy, and providing
load-balancing statistics at port 8080,

– with iptables installed, configured to block all incoming traffic except for ports 80 (HTTP traffic),
8080 (load-balancing statistics), 22 (SSH), and 5308 (CFEngine).

• There are N backend web servers (for N giving the scale factor):

1https://cfengine.com/wp-content/uploads/2020/09/AnsibleCFEngine_whitepaper_1.pdf
2E.g. https://sweetness.hmmz.org/2019-10-28-operon.html linked also from the previous white paper.

https://cfengine.com/wp-content/uploads/2020/09/AnsibleCFEngine_whitepaper_1.pdf
https://cfengine.com/wp-content/uploads/2020/09/AnsibleCFEngine_whitepaper_1.pdf
https://sweetness.hmmz.org/2019-10-28-operon.html


2

– half of them running CentOS 7, half of them running Ubuntu 18
– with the Nginx software installed and the nginx service running under the nginx user, serving

content at port 8080 with index.html identifying the machine and the infrastructure management
tool used to set it up,

– with iptables installed, configured to block all incoming traffic except for ports 8080 (HTTP
content), 22 (SSH) and 5308 (CFEngine).

The above specification requires demonstration of basic capabilities of any infrastructure management
solution like OS-specific configuration, package installation, rendering configuration files, working with
users and services, etc. At the same time, it is very minimalistic with very few external dependencies and
hidden variables (only the packages need to be installed from the repositories).

We implemented the above specification as Ansible playbooks as well as CFEngine policy in a publicly
available repository3. Of course, there are multiple ways of achieving the same results, but we tried to
keep things as simple and straightforward as possible. We compared CFEngine Enterprise with AWX
which is the upstream project of Ansible Tower. We used the default configuration for both tools, except
the number of forks used for the ansible-playbook process as explained later.

B. Hardware specification
There are two strategies for running scalability tests:
• using fake clients simulating the activities of real clients with lower resource requirements or
• using real clients and accepting the costs of resource requirements.
Both strategies can provide valid and valuable results, but the first approach is sensitive to hidden and

often subtle differences between real clients and the simulated behavior. To eliminate that risk, increased
by the fact that we are not Ansible experts, we decided to use the latter strategy, with real clients. Virtual
machines in a public cloud, to be more precise.

We used our own tool, cf-remote4, to spawn virtual machines in the Google Cloud Platform (GCP)
and we chose the n1-standard-4 machine for the AWX host, CFEngine hub, and the HA proxy and e2-
micro machines for the backend web servers. The n1-standard-4 machine type means 4 vCPUs, 15 GiB
RAM, and local SSD. We could have used bigger machines for AWX and CFEngine hub, but we wanted
to find the limits and compare the two tools without the need for spawning many thousands of client
machines. The e2-micro machines used for the backend web servers only have 2 shared vCPUs, 1 GiB of
on-demand RAM, and non-local SSD. Of course, these are the smallest and cheapest machines available
in GCP which allowed us to limit the costs. At the same time, those machines are not handling any real
traffic and so the resources they provide are fully available for the needs of the infrastructure management
which should be very well covered.

III. ANSIBLE SCALABILITY

With the VMs spawned, we ran the HA proxy playbook and then the web server playbook on in-
creasingly bigger and bigger groups of hosts measuring the times it took to run the playbook. This
simulated adding new hosts to the infrastructure and using fresh hosts for each group eliminated side
effects potentially caused by previous changes done on the same hosts.

We repeated the measurements multiple times, each time with fresh virtual machines, to make sure
we had enough results that were not affected by random anomalies in the cloud. The results are in the
following figure 1.

As can be seen, there is a linear dependency between the number of hosts the playbook runs on and
the time it takes to finish the whole job (a playbook run on a set of hosts). This dependency was expected
due to the nature of how Ansible works – it executes each task from the given playbook on all the hosts

3https://gitlab.com/Northern.tech/CFEngine/web-cluster
4https://github.com/cfengine/core/tree/master/contrib/cf-remote

https://gitlab.com/Northern.tech/CFEngine/web-cluster
https://gitlab.com/Northern.tech/CFEngine/web-cluster
https://github.com/cfengine/core/tree/master/contrib/cf-remote
https://cloud.google.com/compute/docs/machine-types#n1_machine_types
https://cloud.google.com/compute/docs/machine-types#e2_shared-core_machine_types
https://gitlab.com/Northern.tech/CFEngine/web-cluster
https://github.com/cfengine/core/tree/master/contrib/cf-remote


3

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450 500

tim
e[

s]

hosts

Fig. 1: Ansible playbook run lengths

from the set and then moves to the next task. The bigger the number of hosts, the longer it takes to
execute every task on all of them. There is some level of parallelism given by the number of forks the
ansible-playbook process creates to run the tasks on the hosts. The default is 5 and there seems to be
no auto-scaling based on hardware detection in AWX. We used 20 for our measurements because the
default yielded very long run times for the jobs and higher numbers didn’t shorten the times (on the
HW configuration we used). AWX also supports job slices which is another level of parallelism (multiple
sub-jobs are started for the job, each with the specified number of forks). This defaults to 1 again with no
auto-scaling and higher numbers didn’t make the total times shorter on the HW configuration we used.

The testing playbook is very simple, with only 15 tasks – installing and removing a few packages,
changing a couple of configuration files, creating one user, and starting two services. Still, running it on
500 fresh hosts was repeatedly taking around 30 minutes (1800 seconds). And again, given the nature of
how Ansible works, this time would become longer with every extra task added to the playbook.

IV. CFENGINE SCALABILITY

With the same specification implemented in CFEngine policy, we were able to deploy 3500 hosts using
identical hardware configuration and the default 5 minute intervals for agent runs and report collection.
It took around 5 minutes to install CFEngine on the machines and bootstrap them to the CFEngine hub
(using parallel ssh) then they all fetched and evaluated the policy in a time a bit over 5 minutes at
which point the deployment was done. In another 5 minute interval, the reports from the policy evaluation,
together with lots of information about the hosts, were collected by the CFEngine hub and thus available
to the administrator in the web user interface.

If we look at the following chart 2, showing the load in the last minute (reported by uptime) on the
CFEngine hub machine over time, we can see that in every 5 minute interval there is still a window of
time when the report collection is done and the load drops below 1. In other words, even with 3500 hosts
bootstrapped to a 4 vCPU virtual machine we used, there was still some free resource capacity and so
even more hosts could be bootstrapped to such hub machine without overloading it to a malfunctioning
state.



4

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

lo
ad

minutes

Fig. 2: System load on the CFEngine hub

The chart also shows how CFEngine hub works when collecting reports – it tries to collect the reports
from all the bootstrapped hosts as soon as possible at the specified times, relying on the Linux kernel
schedulers that make sure all the cf-hub processing threads and the PostgreSQL backend are assigned CPU
and I/O capacity and all the data gets through. This results in a very high load reported by the operating
system, but thanks to the clever schedulers in the kernel the system doesn’t choke and instead fully utilizes
all resources. As long as it gathers and processes reports from all the hosts before the next specified report
collection time, everything works as expected. The bigger the number of hosts bootstrapped to the hub,
the higher the peak load is and the longer it takes for it to drop.

Thus for some number of bootstrapped hosts, the system reaches the point where it isn’t able to collect
and process all the data before the next report collection begins and the unfinished tasks start piling up.
This CFEngine scalability limit depends on the hardware used and the amount of data the bootstrapped
hosts report back to the hub. The reports are using a delta mechanism, so unchanged data is not being
sent over and over. For this reason, it is impossible to tell what the real highest possible number of
bootstrapped hosts for a hub with a given HW configuration is. In the simple scenario we tested, this
limit would be over 5000 hosts as the load data suggests. We couldn’t, unfortunately, test such a setup
because we hit the limits of the cloud setup we used. For a real-life policy producing more reporting data
a bit more powerful hardware might be needed, but having 5000 hosts bootstrapped to one CFEngine hub
is generally not a problem and is officially supported by CFEngine Enterprise.

In contrast to how with Ansible adding more tasks to the playbook increases the total time of running
the playbook on the given set of hosts, the autonomous CFEngine hosts evaluate the policy independently
and extending the policy only results in longer runs of the cf-agent process on the hosts. And similar to
how reporting can scale up to the given report collection interval, the cf-agent runs can scale up to the
agent run interval (5 minutes by default). The length of the agent run depends on the actions the policy
triggers. Some actions can potentially take a long time, for example installing many packages with slow
connection to the repositories, however, there are mechanisms to avoid triggering such actions too often.



5

V. CONCLUSIONS

A simple test setup deploying an HA proxy machine with several backend web servers has shown us
the differences in scalability between Ansible and CFEngine. While the exact numbers are interesting, one
has to take into account the specificity of the setup – the Ansible playbook and CFEngine policy together
with the hardware used for the tests and measurements. More interesting are the general observations
demonstrating how the different architectures of Ansible and CFEngine affect the scalability of the two
infrastructure management solutions. The measurements also show that the general assumption that Ansible
is good for quickly pushing changes to the managed hosts and getting instant feedback in contrast to
CFEngine where hosts only pull and evaluate new policy at a certain interval, only applies up to a certain
number of hosts. For specific playbooks and with a different hardware setup, the numbers would vary, but
even our simple scenario has shown that the linear growth means that the time required to run a playbook
on a set of hosts quickly becomes impractical with a growing infrastructure. The typical (default) 10
minute "round trip time" of CFEngine hosts pulling the new policy, evaluating it, and reporting the results
back, on the other hand, means that changes happen faster and sooner with a certain number of hosts,
~150 or more (in our scenario) 5.

0 200 400 600 800 1000
Hosts

0

10

20

30

40

50

60

M
in
ut
es

(142 hosts, 10 minutes)

Round trip time of making changes and observing results
Ansible
Ansible (projected)
CFEngine

As we suggested and explained in our previous white paper, Ansible and CFEngine are two very
different but complementary solutions for infrastructure management. This analysis proves the point by
demonstrating the big differences between the two tools in scalability where one can handle an order of
magnitude more hosts in a 10 minute interval and the other can handle a small number of hosts in an
order of magnitude shorter time. In other words, making some changes to a small number of hosts or

5As mentioned earlier, it is important to note that, apart from the number of forks for Ansible, we stuck with default values and configuration.
Both tools could be tweaked and optimized for different host counts and environments.

https://cfengine.com/wp-content/uploads/2020/09/AnsibleCFEngine_whitepaper_1.pdf


6

deploying them is faster to do with Ansible. Pushing a change to a big number of hosts, maintaining them
according to a given policy or deploying them is faster to do with CFEngine. A typical infrastructure
management process involves both of those activities and so an optimal solution is the combination of
the two tools.



7

VI. REFERENCES

1) Vratislav Podzimek (2020): Ansible|CFEngine, Solution for the whole infrastructure lifetime,
https://cfengine.com/wp-content/uploads/2020/09/AnsibleCFEngine_whitepaper_1.pdf

2) David Wilson (2019): Operon: Extreme Performance For Ansible,
https://sweetness.hmmz.org/2019-10-28-operon.html

3) O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login: The USENIX Magazine,
February 2011:42-47.

https://cfengine.com/wp-content/uploads/2020/09/AnsibleCFEngine_whitepaper_1.pdf
https://sweetness.hmmz.org/2019-10-28-operon.html

	Motivation
	Model
	Scenario
	Hardware specification

	Ansible scalability
	CFEngine scalability
	Conclusions
	References

